私募

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz

互联网和金融,在数据挖掘上究竟存在什么区别?

[复制链接]
发表于 2019-6-13 00:44:34 | 显示全部楼层 |阅读模式
作者在银行做了两年的数据分析和发掘工作,较少打仗互联网的应用场景,因此,不绝都在思索一个题目,“互联网和金融,在数据发掘上,毕竟存在什么样的区别”。在对这个题目的探索和明白过程中,他发现数据发掘自己包罗许多条理。而且模子自己也是存在传统和时髦之分的。 % N, o9 ~' z& x& ]

/ b1 d0 X7 P2 l" W% B% A" d" c7 i- b. y. ]* h7 V1 r5 ~4 G
一、数据发掘的条理 ; S6 ?* {  p/ [+ t* Y  [1 E3 |
不绝想整理下对数据发掘差别条理的明白,这也是这两年多的时间内里,和许多金融范畴、互联网做数据相干工作的小搭档,谈天交换的一些整理和归纳。大概可以分为四类:" F% D6 z% z# ~1 `

* N0 }3 ~6 w( G0 M' f
& G' B" f" y3 m6 j2 j(一)纯粹的数据加工: V; l3 y% E' o8 X/ M
偏重于变量加工和预处理处罚,从源体系或数据堆栈,对相干数据举行提取、加工、衍生处理处罚,天生各种业务表。然后,以客户号为主键,把这些业务表整合汇总,终极可以拉出一张大宽表,这张宽表就可以称之为“客户画像”。即,有关客户的许多变量和特性的聚集。7 G; v. i' V& N7 a( w
在这个阶段,重要的数据加工工具为SQL和SAS base。
& D+ Q' V* f9 o(二)傻瓜式的发掘工具2 s( S/ R! A- f( ]6 {: g' m
较为典范的就是SAS EM和clementine,内里嵌入许多较为传统成熟的算法、模块和节点(比方逻辑回归、决定树、SVM、神经网络、KNN、聚类等)。通过鼠标的托拉拽,流程式的节点,根本上就可以实现你发掘数据的需求。
. n7 A4 }2 Q0 `- B" l傻瓜式操纵的长处就是使得数据发掘,入手非常快,较为简单。但是,也存在一些缺陷,即,使得这个发掘过程变得有点单调和无趣。没办法批量运算模子,也没办法开辟一些个性化的算法和应用。用的比力纯熟,而且想要进一步提拔的时间,发起把这两者扬弃。$ |7 X* G! _" R" @' M
(三)较为自由的发掘工具) f1 x5 y3 J8 A
较为典范的就是R语言和Python。这两个发掘工具是开源的,前者是统计学家开辟的,后者是盘算机学家开辟的。
: u. Y4 O  ]& Z& a5 x! ]一方面,可以有许多成熟的、前沿的算法包调用,别的一方面,还可以根据自己的需求,对既有的算法包举行修改调解,顺应自己的分析需求,较为机动。别的,Python在文本、非结构化数据、社会网络方面的处理处罚,功能比力强盛。
* Y- o( d6 s8 O' Q5 B(四)算法拆解和自行开辟
" Y' ~& b' T* ~: E5 f; C+ |- o8 E一样平常会利用Python、C、C++,自己重新编写算法代码。比方,通过自己的代码实现逻辑回归运算过程。乃至,根据自己的业务需求和数据特点,更改此中一些假定和条件,以便进步模子运算的拟合结果。尤其,在生产体系上,通过C编写的代码,运行速率比力快,较易摆设,可以或许满意及时的运算需求。, G/ a) h* y9 J' x" c  `
一样平常来说,从互联网的雇用和对技能的需求来说,一样平常JD内里要求了前三种,如许的职位会被称为“建模分析师”。但是如果增长上了末了一条,如许的职位大概就改称为“算法工程师”。- O2 w& b2 q& J  L! g
二、模子的明白:传统的和时髦的 % {* y. H. Z/ w5 u% `+ K) z
据明白,模子应该包罗两种范例。一类是传统的较为成熟的模子,别的一类是较为时髦风趣的模子。对于后者,各人会表现出更多的爱好,一样平常是代表着新技能、新方法和新思绪。& s6 u7 f6 k( k
(一)传统的模子  W" `& P/ o$ ^* E
传统的模子,重要就是为了办理分类(比方决定树、神经网络、逻辑回归等)、推测(比方回归分析、时间序列等)、聚类(kmeans、系谱、密度聚类等)、关联(无序关联和有序关联)这四类题目。这些都是较为通例和经典的。) ~& q5 J4 @' A8 v4 {: B
(二)时髦风趣的模子3 P9 C3 s) i: ]8 Q. ]4 ]* p
比力风趣、前沿的模子,大概包罗以下几种范例,即社会网络分析、文天职析、基于位置的服务(Location-Based Service,LBS)、数据可视化等。! r6 p" m" o+ F: y; E' G. r
它们之以是比力时髦,大概的缘故原由是,采取比力新奇前沿的分析技能(社会网络、文天职析),非常贴近现实的应用(LBS),大概是可以或许带来更好的客户体验(数据可视化)。0 l5 I6 x, {. r+ }' H; N1 S/ D# ^0 P
, P! w# o6 m5 p

  n) D# ^0 x  ?: d* R(1)社会网络的应用
. G2 g1 C% K$ ?! c) C6 y传统的模子将客户视为单一个体,忽视客户之间的关系,基于客户的特性创建模子。社会网络是基于群体的,偏重研究客户之间的关联,通过网络、中心度、接洽强度、密度,得到一些非常风趣的结果。典范的应用,比方,关键客户的辨认、新产物的排泄和扩散、微博的传播、风险的感染、保险或名誉卡网络团伙敲诈、基于社会网络的保举引擎开辟等。; H& D  f6 a9 Q) N, p/ }" |# H! ]
3 R! ]9 @6 Q9 }- E8 a2 L. p* q

0 P# }, E" u0 L! f& P1 H8 ~(2)文本发掘的应用9 B7 \6 Z9 j, v+ o8 }5 G* `  ~2 V
文本作为非结构化数据,加工分析存在肯定的难度,包罗怎样分词、怎样判定多义词、怎样判定词性,怎样判定感情的猛烈水平。典范的应用,包罗搜索引擎智能匹配、通过投诉文本判定客户感情、通过舆情监控品牌荣誉、通过涉诉文本判定企业策划风险、通过网络爬虫抓取产物品评、词云展示等。3 j$ V* L4 Z- o" ?1 N- N9 w
关于文天职析,迩来朋侪圈有篇分享,很故意思,号称可以让你刹时酿成墨客。原理很简单,就是先把《全宋词》分词,然后统计频数前100的词语。然后你可以随机凑6个数(1-100),如许就可以拼集出两句诗。比如,随机写两组数字,(2,37,66)和(57,88,33),对应的词语为(东风、无人、黄花)和(干瘪、彻夜、风月)。构成两句诗,即“东风无人黄花落,干瘪彻夜风月明”。还真像那么一回事,有爱好可以玩一玩。8 j+ q/ E7 r* S+ a. N
(3)LBS应用
9 y; A* k+ b' w$ K, m即基于位置的服务,即怎样把服务和用户的地理位置联合。当下的APP应用,如果不能很好地和地理位置联合,许多时间很难有繁茂的生命力。典范的APP,比方大众点评(餐饮位置)、百度舆图(位置和路径)、滴滴打车、微信位置共享、韶光网(影戏院位置)等服务。别的,银行实在也在研究,怎样把线上客户推送到隔断客户迩来的网点,完成O2O的完善对接,从而带来更好的客户体验。
' }) X4 L2 G- k7 A1 J$ T
' e5 T& S6 m$ t
% x# C8 p2 n( R+ r+ D! O( [* Q: z4 B(4)可视化应用
$ Z2 j* I: l1 q; m& N! s基于舆图的一些可视化分析,比力热门,比方,春节生齿迁移图、微信生动舆图、人流热力图、拥堵数据的可视化、社会网络扩散可视化等。
; V& J: Y8 ~5 b% e9 N# g* f& b, f+ v; j! h1 u9 e
# G7 m) N/ \- C0 Z! ?. J0 F
如果你想让你的分析和发掘比力吸引眼球,请只管往以上四个方面靠拢。
# Z- q0 ?8 C* Z8 J$ E三、互联网和金融数据发掘的差别
& L! m( N' ^, n# p' V博士后两年,对银行范畴的数据发掘有些根本的相识和认识,但是面对众多的数据范畴,也只能算刚刚入门。许多时间,会很好奇互联网范畴,做数据发掘毕竟是什么样的形态。+ A3 P" M! s- ?; l) ?; x( m3 B
很早之前,就曾在知乎上提了个题目,“金融范畴的数据发掘和互联网中的数据发掘,毕竟有什么的差别和差别”。这个题目挂了几个月,虽有寥寥的回复,但是没有得到想要的答案。+ o) H) |* P% C2 o  w! ]$ O0 s
既然没人可以或许提供想要的答案,那就,我根据自己的明白、一些场所的碰鼻、以及和一些互联网数据小搭档的打仗,试图归纳和回复下。应该有以下几个方面的差别。
1 |* w0 j5 o% Z: f* M1 h( G, u, F( x: V0 Y. G) r

2 q6 h( T- o5 t9 X, w1 K5 X1 Q6 ](一)“分析”和“算法”
: [4 t0 c! D- b- l+ A6 s9 c在互联网中,“分析”和“算法”,分得非常开,对应着“数据分析师”和“算法工程师”两种脚色。前者更多偏重数据提取、加工、处理处罚、运用成熟的算法包,开辟模子,探索数据中的模式和规律。后者更多的是,自己写算法代码,通过C或python摆设到生产体系,及时运算和应用。
; j6 p% ~9 [. r! Y( h7 b# R在银行范畴,根本上,只能看到第一种脚色。数据根本上泉源于堆栈体系,然后运用SQL、SAS、R,提取、加工、建模和分析。
$ Q/ K5 F) }% h! T1 G(二)数据范例
6 g. `. g9 ]* i  @$ o3 H, N& X数据范例,重要包罗“结构化”和“非结构化”两类数据。前者就是传统的二维表结构。一行一条记载,一列一个变量。后者包罗文本、图像、音频、视频等。
$ W( y) \7 O* U; ]4 K银行内里的数据,更多的是结构化数据,也有少量的非结构化数据(投诉文本、贷款审批文本等)。业务部分对非结构化数据的分析需求比力少。因此,在非结构化数据的分析建模方面,稍显不敷。
- @1 ~, z$ W2 y5 \互联网,更多的是网络日记数据,以文本等非结构化数据为主,然后通过肯定的工具将非结构化数据变化为结构化数据,进一步加工和分析。
$ U- {" c' Q5 e(三)工具、存储和架构* Y  {) ^' m9 h5 W. C
互联网,根本上是免费导向,以是常常选择开源的工具,比方MySql、R、Python等。常常是基于hadoop的分布式数据收罗、加工、存储和分析。
* g3 K* R/ s8 O, @4 V0 |4 Y商业银行一样平常基于成熟的数据堆栈,比方TD,以及一些成熟的数据发掘工具,SAS EG和EM。
. s/ e8 i7 f3 z5 G& a1 A6 p(四)应用场景6 u* O3 Q/ S" ]' c
在应用场景上,两者之间也存在着非常大的差别。& ]9 F; I% n7 {) |  A: K
(1)金融范畴
. ?$ Q4 Y4 M) {  O9 F金融范畴的数据发掘,差别的细分行业(如银行和证券),也是存在差别的。2 a1 I) \) s5 a) }6 h) _- w
银行范畴的统计建模。银行内的数据发掘,较为偏重统计建模,数据分析对象重要为截面数据,一样平常包罗客户智能(CI)、运营智能(OI)和风险智能(RI)。开辟的模子以离线为主,少量模子,比方反敲诈、申请评分,对及时性的要求比力高。
. I, k6 c4 y: w! b' X. E( R证券范畴的量化分析。证券行业的发掘工作,更加偏重量化分析,分析对象更多的是时间序列数据,旨在从大盘指数、颠簸特点、汗青数据中发现趋势和机遇,举行短期的套利操纵。量化分析的及时性要求也比力高,大概是离线运算模子,但是在生意业务体系摆设后,及时运算,捕捉生意业务事故和生意业务机遇。
9 m& R0 M& F5 o" R- s* I(2)互联网- o  n, C) H6 e5 x
互联网的及时盘算。互联网的应用场景,比方保举引擎、搜索引擎、广告优化、文本发掘(NLP)、反敲诈分析等,许多时间必要将模子摆设在生产体系,对及时相应要求比力高,必要包管比力好的客户体验。- H5 B4 C, X: Y, @6 z3 I
四、数据发掘在金融范畴的典范应用 2 {6 O9 O0 f1 O: a+ Z8 `# d2 }
别人常常会问,在银行内里,数据发掘毕竟是做什么的。也常常在思索怎样从对方的角度回复这个题目。举几个常见的例子做个表明:
- b( t  {% E# D# H: F2 x; K5 X- s4 E7 s$ A7 ]
" a; c/ J+ k# y4 G
(一)名誉评分8 r0 t6 J  k6 g
申请评分。当你申请名誉卡、消耗贷款、策划贷款时,银行是否会审批通过,发放多大规模的额度?这个判定很大概就是申请评分模子运算的结果。通过模子盘算你的还款本领和还款意愿,综合评定放款额度和利率水平。
) i" g+ Z) j& P* H$ ~运动评分。当你名誉卡利用一段时间后,银行会根据你的刷卡运动和还款记载,通过运动评分模子,判定是否给你调解固定额度。) x$ }5 g! E8 x, O9 G* P
(二)个性化产物保举" ^1 _7 K! x3 G( ]
许多时间,你大概会收到银行推送的短信大概接到银行坐席的外呼,比如,向你保举某款理产业物。这背后,很大概就是产物相应模子运算的结果。银行会通过模子,盘算你购买某款理产业物的概率,如果概率比价高的话,就会向你推送这款理产业物。
  x4 K, J' l$ Q3 P6 |! C+ K别的,许多时间,差别的客户,银行会个性化的保举差别的产物,很大概就是产物关联分析模子运算的结果。* c2 y  Z/ D, x+ z
(三)个性化广告展示: V$ K( ?) G- N
登岸商业银行网站时,通常会有一个广告banner,banner上会展示多少幅广告。许多时间,差别的客户登岸网站,会打仗到差别的广告,即个性化的广告推送。一样平常来说,背景颠末盘算,会判定,你对哪几款广告和产物感爱好,末了推送3-5款你最感爱好的产物,从而可以或许有效吸引你的注意,促进点击、转化和成交。
) z/ L6 q3 K! H5 Z. n; q% f作者:周学春
http://www.simu001.cn/x107565x1x1.html
最好的私募社区 | 第一私募论坛 | http://www.simu001.cn

精彩推荐

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|手机版|Archiver| ( 桂ICP备12001440号-3 )|网站地图

GMT+8, 2025-12-19 06:51 , Processed in 4.981457 second(s), 27 queries .

Powered by www.simu001.cn X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表