同样,我们将获得最佳学习率的这部分代码封装到函数get_learning_rate()中,并将获得的最佳学习率作为其返回值:
) e- N; Z# `- w. ^! W7 ~def get_learning_rate(): pl.seed_everything(42) trainer = pl.Trainer(accelerator="cpu", gradient_clip_val=0.1,logger=False) net = NHiTS.from_dataset( training, learning_rate=3e-2, weight_decay=1e-2, loss=MQF2DistributionLoss(prediction_length=max_prediction_length), backcast_loss_ratio=0.0, hidden_size=64, optimizer="AdamW", ) res = Tuner(trainer).lr_find( net, train_dataloaders=t_loader, val_dataloaders=v_loader, min_lr=1e-5, max_lr=1e-1 ) lr_=res.suggestion() return lr_% \1 B5 a$ c9 N" L* s! Q
如果您想可视化学习率,可以添加以下代码:( S& x3 M. j' a6 f( A
添加图片注释,不超过 140 字(可选)print(f"suggested learning rate: {res.suggestion()}")fig = res.plot(show=True, suggest=True)fig.show()& M) m% s. o W9 z( J5 g
此示例中的结果如下:: ~6 ]3 O4 G% }& z( i9 }' G" v
! H. r8 q! ? o- f" |; z
添加图片注释,不超过 140 字(可选)+ U+ f* G& \" _, f
建议学习率:0.003981071705534973。2. 定义EarlyStoping回调此回调主要用于监测验证损失,并在损失连续几个时期没有改善时停止训练。这样可以防止模型过拟合。6 |/ ?- S* ]9 k& q" g# f3 e/ n j
early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=10, verbose=True, mode="min")
6 e. _6 M3 m+ d. k# g7 \1 `) j8 k这里需要注意的参数是“patience”,它主要控制在训练过程中,如果损失连续几个时期没有改善,何时停止。我们把它设置为10。3. 定义ModelCheckpoint回调此回调主要用于控制模型归档和归档的名称。我们主要设置这两个变量。ck_callback=ModelCheckpoint(monitor='val_loss', mode="min", save_top_k=1, filename='{epoch}-{val_loss:.2f}')
" w' j, P( e2 W" z: ^“save_top_k”用于控制保存前几个最好的模型。我们将其设置为1,只保存最好的模型。4. 定义训练模型我们首先需要在lightning.pytarch中实例化一个Trainer类,并添加我们之前定义的两个回调。
* e' L( G$ P" N7 y) `trainer = pl.Trainer( max_epochs=ep, accelerator="cpu", enable_model_summary=True, gradient_clip_val=1.0, callbacks=[early_stop_callback,ck_callback], limit_train_batches=30, enable_checkpointing=True,)4 A. y6 ]: ?6 J: a3 [ ^
这里我们需要注意的参数是“max_epochs”(最大训练时期数)、“gradient_clip_val”(用于防止梯度爆炸)和“回调”。这里“max_epochs”使用ep,这是我们稍后将定义的全局变量,而“callbacks”是我们的回调集合。接下来,我们还需要定义NHiTS模型并实例化它: D2 i g6 I$ L$ n
net = NHiTS.from_dataset( training, learning_rate=lr, log_interval=10, log_val_interval=1, weight_decay=1e-2, backcast_loss_ratio=0.0, hidden_size=64, optimizer="AdamW", loss=MQF2DistributionLoss(prediction_length=max_prediction_length),)
C' s, ?( e+ H这里,参数通常不需要修改,只需使用默认的参数即可。这里我们只将“loss”修改为MQF2DistributionLoss 损失函数。5. 训练模块 我们使用Trainer对象的fit()函数来训练模型:4 S9 [5 q) |9 J1 q2 W
trainer.fit( net, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader,)
1 }9 C$ g& U5 D0 E3 S4 X1 U. Q% B类似地,我们将这部分代码封装到一个函数train()中:def train(): early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=10, # The number of times without improvement will stop verbose=True, mode="min") ck_callback=ModelCheckpoint(monitor='val_loss', mode="min", save_top_k=1, # Save the top few best ones filename='{epoch}-{val_loss:.2f}') trainer = pl.Trainer( max_epochs=ep, accelerator="cpu", enable_model_summary=True, gradient_clip_val=1.0, callbacks=[early_stop_callback,ck_callback], limit_train_batches=30, enable_checkpointing=True, ) net = NHiTS.from_dataset( training, learning_rate=lr, log_interval=10, log_val_interval=1, weight_decay=1e-2, backcast_loss_ratio=0.0, hidden_size=64, optimizer="AdamW", loss=MQF2DistributionLoss(prediction_length=max_prediction_length), ) trainer.fit( net, train_dataloaders=t_loader, val_dataloaders=v_loader, # ckpt_path='best' )return trainer: t% ?! K7 b5 g8 L. M- B
此函数将返回一个经过训练的模型,可用于预测任务。
1 t, E0 c, U9 E( `4 n1 H2 k3 j9 r定义执行逻辑1. 定义全局变量:
+ W2 b( W+ w. A& I2 Y( l! kep=200__train=Falsemt_data_len=200000max_encoder_length = 2*96max_prediction_length = 30batch_size = 128
, ?, Q+ F7 `; h: |__train用于控制我们当前是在训练还是测试模型。值得注意的是,ep用于控制最大训练时期。由于我们已经设置了EarlyStoping,因此可以将该值设置得更大一点,因为当模型不再收敛时,它将自动停止。mt_data_len是从客户端获得的最近时间序列数据的数量。max_encoder_length 和 max_prediction_length 分别是最大编码长度和最大预测长度。2.训练当训练完成时,我们还需要将当前的最佳训练结果保存到本地文件中,因此我们定义了一个json文件来保存这些信息:info_file='results.json'为了使我们的训练过程更加清晰,我们需要避免在训练过程中输出一些不必要的警告信息,因此我们将添加以下代码:: ]* A2 h8 e/ l' N* M- U3 S
warnings.filterwarnings("ignore")$ G4 G* Z: e" ?4 ~: a: s. z
接下来是我们的训练逻辑:6 w* h& J2 |7 n3 m. c/ A6 W
dt=get_data(mt_data_len=mt_data_len)if __train: # print(dt) # dt=get_data(mt_data_len=mt_data_len) t_loader,v_loader,training=spilt_data(dt, t_shuffle=False,t_drop_last=True, v_shuffle=False,v_drop_last=True) lr=get_learning_rate() trainer__=train() m_c_back=trainer__.checkpoint_callback m_l_back=trainer__.early_stopping_callback best_m_p=m_c_back.best_model_path best_m_l=m_l_back.best_score.item() # print(best_m_p) if os.path.exists(info_file): with open(info_file,'r+') as f1: last=json.load(fp=f1) last_best_model=last['last_best_model'] last_best_score=last['last_best_score'] if last_best_score > best_m_l: last['last_best_model']=best_m_p last['last_best_score']=best_m_l json.dump(last,fp=f1) else: with open(info_file,'w') as f2: json.dump(dict(last_best_model=best_m_p,last_best_score=best_m_l),fp=f2): ?* q5 d9 E0 `
训练完成后,您可以在根目录的results.json文件中找到我们最佳模型的存储位置和最佳分数。在训练过程中,您将看到一个进度条,显示每个 epoch 的进度。 |